Installing FutureAGI SDK
Copy
Ask AI
pip install futureagi
Initializing FutureAGI Dataset
Copy
Ask AI
from fi.datasets import Dataset
dataset = Dataset(fi_api_key="<your_api_key>",
fi_secret_key="<your_api_secret>") # Optional, if you want to set the API key and secret key manually
Click here to learn how to access your API keys.
It’s recommended to set the API key and secret key as environment variables.
Create a Dataset
Copy
Ask AI
from fi.datasets import Dataset, DatasetConfig, ModelTypes
from fi.datasets.models import Column, Row, Cell, DataTypeChoices, SourceChoices
import uuid
# Create a dataset configuration
config = DatasetConfig(
id=None, # Will be set by the server
name="my_dataset", # Choose a unique name
model_type=ModelTypes.GENERATIVE_LLM
)
# Initialize and create the dataset
dataset = Dataset(dataset_config=config)
dataset = dataset.create()
Add Columns to Dataset
Copy
Ask AI
# Define columns
columns = [
Column(
name="Name",
data_type=DataTypeChoices.TEXT,
source=SourceChoices.OTHERS,
source_id=None,
),
Column(
name="Age",
data_type=DataTypeChoices.INTEGER,
source=SourceChoices.OTHERS,
source_id=None,
),
Column(
name="AUDIO_URLS",
data_type=DataTypeChoices.AUDIO,
source=SourceChoices.OTHERS,
source_id=None
)
]
# Add columns to dataset
dataset = dataset.add_columns(columns=columns)
Add Rows to Dataset
Copy
Ask AI
# Define rows with cells
rows = [
Row(
order=1,
cells=[
Cell(column_name="Name", value="Alice"),
Cell(column_name="Age", value=25),
Cell(column_name="AUDIO_URLS", value="https://example.com/audio1.mp3")
],
),
Row(
order=2,
cells=[
Cell(column_name="Name", value="Bob"),
Cell(column_name="Age", value=30),
Cell(column_name="AUDIO_URLS", value="https://example.com/audio2.mp3")
],
),
]
# Add rows to dataset
dataset = dataset.add_rows(rows=rows)
Download Dataset
Copy
Ask AI
# Download dataset to a CSV file
file_path = "my_dataset.csv"
dataset.download(file_path=file_path)
# Read the downloaded file
with open(file_path, "r") as file:
content = file.read()
print(content)
Delete Dataset
Copy
Ask AI
# Delete the dataset
dataset.delete()
Make sure to handle the downloaded file cleanup after you’re done with it:
Copy
Ask AI
import os
if os.path.exists(file_path):
os.remove(file_path)