FI Semantic Conventions
Standardizing span attributes across various models, frameworks, and vendors
When sending traces, you might want to define custom attributes for each span. Semantic conventions are specific attribute keys or values that hold special significance. In Future AGI, certain attribute keys are highlighted more prominently, in addition to showing up in the attributes tab like other keys.
Types of Attributes
- Span
- Message
- Document
- Reranker
- Embedding
- Tool Call
For a comprehensive guide to Python semantic conventions, refer to the following resource on GitHub: FI Python Semantic Conventions.
Attribute Overview
Attribute | Type | Example | Description |
---|---|---|---|
document.content | String | "This is a sample document content." | The content of a retrieved document |
document.id | String/Integer | "1234" or 1 | Unique identifier for a document |
document.metadata | JSON String | "{'author': 'John Doe', 'date': '2023-09-09'}" | Metadata associated with a document |
document.score | Float | 0.98 | Score representing the relevance of a document |
embedding.embeddings | List of objects | [{"embedding.vector": [...], "embedding.text": "hello"}] | List of embedding objects including text and vector data |
embedding.model_name | String | "BERT-base" | Name of the embedding model used |
embedding.text | String | "hello world" | The text represented in the embedding |
embedding.vector | List of floats | [0.123, 0.456, ...] | The embedding vector consisting of a list of floats |
exception.escaped | Boolean | true | Indicator if the exception has escaped the span’s scope |
exception.message | String | "Null value encountered" | Detailed message describing the exception |
exception.stacktrace | String | "at app.main(app.java:16)" | The stack trace of the exception |
exception.type | String | "NullPointerException" | The type of exception that was thrown |
input.mime_type | String | "text/plain" or "application/json" | MIME type representing the format of input.value |
input.value | String | "{'query': 'What is the weather today?'}" | The input value to an operation |
llm.function_call | JSON String | "{function_name: 'add', args: [1, 2]}" | Object recording details of a function call in models or APIs |
llm.input_messages | List of objects† | [{"message.role": "user", "message.content": "hello"}] | List of messages sent to the LLM in a chat API request |
llm.invocation_parameters | JSON string | "{'model_name': 'gpt-3', 'temperature': 0.7}" | Parameters used during the invocation of an LLM or API |
llm.model_name | String | "gpt-3.5-turbo" | The name of the language model being utilized |
llm.output_messages | List of objects† | [{"message.role": "user", "message.content": "hello"}] | List of messages received from the LLM in a chat API request |
llm.prompt_template.template | String | "Weather forecast for {city} on {date}" | Template used to generate prompts as Python f-strings |
llm.prompt_template.variables | JSON String | "{'context': '<context from retrieval>', 'subject': 'math'}" | JSON of key value pairs applied to the prompt template |
llm.prompt_template.version | String | "v1.0" | The version of the prompt template |
llm.token_count.completion | Integer | 15 | The number of tokens in the completion |
llm.token_count.prompt | Integer | 5 | The number of tokens in the prompt |
llm.token_count.total | Integer | 20 | Total number of tokens, including prompt and completion |
message.content | String | "What's the weather today?" | The content of a message in a chat |
message.function_call_arguments_json | JSON String | "{'x': 2}" | The arguments to the function call in JSON |
message.function_call_name | String | "multiply" or "subtract" | Function call function name |
message.role | String | "user" or "system" | Role of the entity in a message (e.g., user, system) |
message.tool_calls | List of objects† | [{"tool_call.function.name": "get_current_weather"}] | List of tool calls (e.g. function calls) generated by the LLM |
metadata | JSON String | "{'author': 'John Doe', 'date': '2023-09-09'}" | Metadata associated with a span |
fi.span.kind | String | "CHAIN" | The kind of span (e.g., CHAIN, LLM, RETRIEVER, RERANKER) |
output.mime_type | String | "text/plain" or "application/json" | MIME type representing the format of output.value |
output.value | String | "Hello, World!" | The output value of an operation |
reranker.input_documents | List of objects† | [{"document.id": "1", "document.score": 0.9, "document.content": "..."}] | List of documents as input to the reranker |
reranker.model_name | String | "cross-encoder/ms-marco-MiniLM-L-12-v2" | Model name of the reranker |
reranker.output_documents | List of objects† | [{"document.id": "1", "document.score": 0.9, "document.content": "..."}] | List of documents outputted by the reranker |
reranker.query | String | "How to format timestamp?" | Query parameter of the reranker |
reranker.top_k | Integer | 3 | Top K parameter of the reranker |
retrieval.documents | List of objects† | [{"document.id": "1", "document.score": 0.9, "document.content": "..."}] | List of retrieved documents |
session.id | String | "26bcd3d2-cad2-443d-a23c-625e47f3324a" | Unique identifier for a session |
tag.tags | List of strings | ["shopping", "travel"] | List of tags to give the span a category |
tool.description | String | "An API to get weather data." | Description of the tool’s purpose and functionality |
tool.name | String | "WeatherAPI" | The name of the tool being utilized |
tool.parameters | JSON string | "{'a': 'int'}" | The parameters definition for invoking the tool |
tool_call.function.arguments | JSON string | "{'city': 'London'}" | The arguments for the function being invoked by a tool call |
tool_call.function.name | String | "get_current_weather" | The name of the function being invoked by a tool call |
user.id | String | "9328ae73-7141-4f45-a044-8e06192aa465" | Unique identifier for a user |
Using Semantic Conventions
Here’s an example of how to implement a semantic convention. Treat them as strings when setting an attribute on a span:
Converting Messages to OpenTelemetry Span Attributes
To export a list of objects as OpenTelemetry span attributes, flatten the list until the attribute values are simple types, such as bool
, str
, bytes
, int
, float
, or simple lists like List[bool]
, List[str]
, List[bytes]
, List[int]
, List[float]
.