from haystack import Pipeline
from haystack.components.fetchers import LinkContentFetcher
from haystack.components.converters import HTMLToDocument
from haystack.components.builders import ChatPromptBuilder
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
fetcher = LinkContentFetcher()
converter = HTMLToDocument()
prompt_template = [
ChatMessage.from_user(
"""
According to the contents of this website:
{% for document in documents %}
{{document.content}}
{% endfor %}
Answer the given question: {{query}}
Answer:
"""
)
]
prompt_builder = ChatPromptBuilder(template=prompt_template)
llm = OpenAIChatGenerator()
pipeline = Pipeline()
pipeline.add_component("fetcher", fetcher)
pipeline.add_component("converter", converter)
pipeline.add_component("prompt", prompt_builder)
pipeline.add_component("llm", llm)
pipeline.connect("fetcher.streams", "converter.sources")
pipeline.connect("converter.documents", "prompt.documents")
pipeline.connect("prompt.prompt", "llm")
result = pipeline.run({"fetcher": {"urls": ["https://haystack.deepset.ai/overview/quick-start"]},
"prompt": {"query": "Which components do I need for a RAG pipeline?"}})
print(result["llm"]["replies"][0].text)